Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Journal of Environmental and Occupational Medicine ; (12): 1283-1289, 2023.
Article in Chinese | WPRIM | ID: wpr-998753

ABSTRACT

Background The safety of drinking water is closely related to people's health. In recent years, relevant studies have identified some health related problems with drinking water in Inner Mongolia Autonomous Region. The complex and diverse natural environment embraced by the vast jurisdiction of the region may lead to uneven drinking water quality across the region. Objective To evaluate eight chemicals including arsenic, cadmium, chromium (hexavalent), lead, mercury, fluoride, trichloromethane, and carbon tetrachloride in urban drinking water in Inner Mongolia Autonomous Region in 2021, and to provide reference for optimizing urban water supply system and ideas for further developing strategies to promote population health. Methods A total of 1228 monitoring sites were set up in urban areas of Inner Mongolia, and water samples were collected once in dry season (May) and once in wet season (August−September). Eight chemicals of interest in drinking water were detected according to the Standard examination methods for drinking water, and assessed for health risks using the health risk assessment model recommended by the United States Environmental Protection Agency (USEPA) and following the Technical guide for environmental health risk assessment of chemical exposure. Mann-Whitney U test was used to compare the concentrations of eight chemicals in urban drinking water by water seasons and water sample types. Results In 2021, a total of 2381 samples of urban drinking water were tested in the Inner Mongolia Autonomous Region, including 1195 samples in wet season and 1186 samples in dry season; 389 samples of finished water and 1992 samples of tap water. The positive rates of arsenic and fluoride were 26.25% and 96.77%, respectively. The positive rates of cadmium, chromium (hexavalent), lead, mercury, trichloromethane, and carbon tetrachloride were 6.22%, 16.63%, 6.09%, 16.67%, 18.98%, and 8.36%, respectively. The exceeding standard rate of fluoride was 4.87%. Trichloromethane and carbon tetrachloride were qualified in all samples. There were statistical differences in the concentrations of arsenic, cadmium, chromium (hexavalent), lead, and carbon tetrachloride in urban drinking water between water seasons (Z=−3.847, P<0.05; Z=2.464, P=0.014; Z=−3.129, P=0.002; Z=4.341, P<0.05; Z=4.342, P<0.05). Only fluoride concentration was found statistically different among different water sample types (Z=−2.287, P=0.022). The non-carcinogenic risks of ingestion and dermal exposure to each chemical in drinking water by water seasons and water sample types were all less than 1, but the P95 total non-carcinogenic risks of oral exposure were greater than 1. The P95 carcinogenic risks of oral exposure to some chemicals in drinking water by water seasons and water sample types were>10−4, which suggested carcinogenic risks, while the carcinogenic risks of dermal explore to chemicals were all less than 10−6. Conclusion In 2021, urban drinking water in Inner Mongolia Autonomous Region is generally safe, but arsenic, cadmium, chromium (hexavalent), lead, mercury, and fluoride still exceed the national limits, posing certain health risks.

2.
China Biotechnology ; (12)2006.
Article in Chinese | WPRIM | ID: wpr-685757

ABSTRACT

By means of genetic cloning and recombinant techniques, full genome cDNA sequences of rotavirus strain TB-Chen were isolated from an infantile hospitalized with acute gastroenteritis. Nucleotide sequences analyses showed that the full genome of strain TB-Chen contains 18613 nucleotides, encoding 5791 amino acids. Genotyping results showed that the strain TB-Chen belongs to genotype G2P[4]/NSp4[A]. This is the first report on a full genome of Group A rotavirus in China, and has important significance for deep understanding structure and functions of rotaviruses and developing rotavirus vaccines.

SELECTION OF CITATIONS
SEARCH DETAIL